A comprehensive analysis of 13C isotope ratios data of authentic honey in China by the EA-IRMS and LC-IRMS methods

Dr. Jinzhong Xu

Jiangsu Sinography Testing CO., LTD.

Email: xujz01@163.com
Honey samples

- **Total number:** 96

- **Honey species:** rape honey, acacia honey, Vitex honey, sunflower honey, cotton honey, Linden honey, Jujube honey, buckwheat honey

- **Geographical origin:** Henan, Sichuan, Hubei, Jiangsu, Jilin, Shanxi, Xinjiang Uygur Autonomous, and Inner Mongolia Autonomous
Authenticity and reliability of samples

- Sampled and sealed by SGS
- Gathered in full-bloom stage
- Stored at -20°C
Test items

- Physical and chemical properties
- Antibiotics
- 13C isotope ratios
- GMO
- Adulteration identification
Established a ^{13}C isotope ratios database of different honey species in China

To resolve the international trade dispute

Aimed to beat the adulteration of honey
13C isotope ratios data of authentic honey in China

- Conventional δ^{13}C-EA-IRMS method proposed by JW White
- δ^{13}C-LC-IRMS method proposed by Intertek laboratory in Europe
Conventional $\delta^{13}\text{C-EA-IRMS}$ method \((\Delta \delta^{13}\text{C} (\text{‰})_{\text{P-H}} \geq -1.0\text{‰})\)

Rape honey

- $\delta^{13}\text{C}_\text{H}$ values: ranged from -26.55 to -29.76
- The $\delta^{13}\text{C}_\text{H}$ values that greater than -29.0 are found chiefly concentrated in the regions of Sichuan province.

- $\delta^{13}\text{C}_\text{P}$ values: ranged from -25.15 to -28.64
- About 70% samples have the $\Delta \delta^{13}\text{C}_{\text{P-H}}$ values that greater than 1.0
Results from different Lab

<table>
<thead>
<tr>
<th>NO.</th>
<th>Lab 1</th>
<th></th>
<th>Lab 2</th>
<th></th>
<th>Lab 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C<sub>H</sub></td>
<td>C<sub>P</sub></td>
<td>C<sub>H</sub></td>
<td>C<sub>P</sub></td>
<td>C<sub>H</sub></td>
<td>C<sub>P</sub></td>
</tr>
<tr>
<td>A007</td>
<td>-29.42</td>
<td>-27.62</td>
<td>-29.31</td>
<td>-27.48</td>
<td>-29.41</td>
<td>-27.48</td>
</tr>
<tr>
<td>A008</td>
<td>-29.68</td>
<td>-27.48</td>
<td>-29.43</td>
<td>-27.15</td>
<td>-29.63</td>
<td>-27.31</td>
</tr>
<tr>
<td>B003</td>
<td>-27.72</td>
<td>-27.08</td>
<td>-27.85</td>
<td>-27.20</td>
<td>-27.77</td>
<td>-27.10</td>
</tr>
<tr>
<td>B004</td>
<td>-27.59</td>
<td>-27.22</td>
<td>-27.74</td>
<td>-27.09</td>
<td>-27.70</td>
<td>-27.10</td>
</tr>
<tr>
<td>C002</td>
<td>-27.00</td>
<td>-25.49</td>
<td>-27.30</td>
<td>-25.53</td>
<td>-27.01</td>
<td>-25.34</td>
</tr>
</tbody>
</table>
Acacia honey

- $\delta^{13}\text{C}_\text{H}$ values: ranged from -23.82 to -25.20
- $\delta^{13}\text{C}_\text{P}$ values: ranged from -22.79 to -24.75
- About 5% samples have the $\Delta\delta^{13}\text{C}_\text{P-H}$ values that greater than 1.0
Linden honey

- Produced from Jilin province
- $\delta^{13}C_H$ values: ranged from -24.20 to -24.52
- $\delta^{13}C_p$ values: ranged from -23.66 to -24.12
- The $\Delta\delta^{13}C_{p-H}$ values are less than 1.0
Vitex honey

- Produced from Hubei and Henan province
- $\delta^{13}C_H$ values: ranged from -25.38 to -26.56
- $\delta^{13}C_P$ values: ranged from -23.73 to -24.30
- About 27% samples have the $\Delta\delta^{13}C_{P-H}$ values that greater than 1.0
Cotten honey

- Originated from Xinjiang Uygur Autonomous Region
- $\delta^{13}C_H$ values: ranged from -24.28 to -25.14
- $\delta^{13}C_P$ values: ranged from -19.44 to -24.83
- More than 70% samples have the $\Delta\delta^{13}C_{P-H}$ values that greater than 1.0
- The maximum $\Delta\delta^{13}C_{P-H}$ values reached to 4.90
Sunflower honey

- Produced from Inner Mongolia Autonomous region and Xinjiang Uygur Autonomous region

- $\delta^{13}C_H$ values: ranged from -25.02 to -25.39

- $\delta^{13}C_P$ values: ranged from -23.39 to -24.55

- Honey produced from Xinjiang have the $\Delta\delta^{13}C_{P-H}$ values that greater than 1.0
Conclusion

- The C4 sugar of all honey samples are qualified, that is, fall within the theoretical ranges of JW White.

- Affected by climatic fluctuations, some samples have δ^{13}C_H values greater than -29.0.

- The Δδ^{13}C_{P-H} values of cotton honey and vitex honey are relatively larger than other honey samples.
The limits for $\Delta \delta^{13}C$ values of pure honey are as follows:

- $\Delta \delta^{13}C$ (%o) max. (maximum difference between all measured $\delta^{13}C$ values): $\leq \pm 2.1\%o$;

- $\Delta \delta^{13}C$ (%o) fru-glu (differences between fructose and glucose $\delta^{13}C$ values): $\leq \pm 1.0\%o$.

- $\Delta \delta^{13}C$ (%o) _p-H_ (differences between protein and honey $\delta^{13}C$ values): $\geq -1.0\%o$
21 among 33 pure honey samples from Qinhuangdao CIQ were failed to pass the test and the qualification yield is 36.4%. The $\Delta \delta^{13}\text{C} (\%o)$ max. value is 4.12.

11 among 32 samples from Jiangsu CIQ were failed to pass the test and the qualification yield is 65.6%. The $\Delta \delta^{13}\text{C} (\%o)$ max. value is 4.36.

The difference values between $\delta^{13}\text{C}_{ds}$ and $\delta^{13}\text{C}_P$ of all rape honey samples are much larger.
Results from Qinhuangdao CIQ

<table>
<thead>
<tr>
<th>Location number</th>
<th>δ^{13}C (%o) protein</th>
<th>δ^{13}C (%o) honey</th>
<th>δ^{13}C (%o) fuu</th>
<th>δ^{13}C (%o) gru</th>
<th>δ^{13}C (%o) ds</th>
<th>δ^{13}C (%o) ts</th>
<th>fru-gru δ^{13}C (%o)</th>
<th>Δδ^{13}C (%o) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A009</td>
<td>-27.46</td>
<td>-29.14</td>
<td>-29.30</td>
<td>-29.49</td>
<td>-31.04</td>
<td>n.a.</td>
<td>0.19</td>
<td>3.58</td>
</tr>
<tr>
<td>A010</td>
<td>-28.42</td>
<td>-29.62</td>
<td>-29.37</td>
<td>-29.50</td>
<td>-31.48</td>
<td>n.a.</td>
<td>0.13</td>
<td>3.06</td>
</tr>
<tr>
<td>B001</td>
<td>-26.82</td>
<td>-27.41</td>
<td>-27.54</td>
<td>-27.66</td>
<td>-29.65</td>
<td>n.a.</td>
<td>0.12</td>
<td>2.83</td>
</tr>
<tr>
<td>B002</td>
<td>-27.39</td>
<td>-27.84</td>
<td>-28.00</td>
<td>-28.10</td>
<td>-29.31</td>
<td>n.a.</td>
<td>0.10</td>
<td>1.92</td>
</tr>
<tr>
<td>B003</td>
<td>-27.08</td>
<td>-27.72</td>
<td>-27.89</td>
<td>-27.92</td>
<td>-29.26</td>
<td>n.a.</td>
<td>0.03</td>
<td>2.18</td>
</tr>
<tr>
<td>C008</td>
<td>-26.64</td>
<td>-27.78</td>
<td>-28.09</td>
<td>-28.22</td>
<td>-27.36</td>
<td>n.a.</td>
<td>0.13</td>
<td>1.58</td>
</tr>
<tr>
<td>C009</td>
<td>-26.60</td>
<td>-27.94</td>
<td>-27.98</td>
<td>-28.08</td>
<td>-28.49</td>
<td>n.a.</td>
<td>0.10</td>
<td>1.89</td>
</tr>
</tbody>
</table>
Acacia honey

- 24 among 29 pure honey samples from Qinhuangdao CIQ were failed to pass the test and the qualification yield is 17.2%. The $\Delta \delta^{13}C$ (‰) max. value is 4.39.

- 24 among 28 samples from Jiangsu CIQ were failed to pass the test and the qualification yield is 14.3%. The $\Delta \delta^{13}C$ (‰) max. value is 4.20.

- The difference values between $\delta^{13}C_{ds}$ and $\delta^{13}C_{mono}$ of all rape honey samples except for those originated from Henan province are much larger.

- Trisaccharide was detected from all these samples
Results from Qinhuangdao CIQ

<table>
<thead>
<tr>
<th>Location number</th>
<th>δ^{13}C (‰) protein</th>
<th>δ^{13}C (‰) honey</th>
<th>δ^{13}C (‰) fuu</th>
<th>δ^{13}C (‰) gru</th>
<th>δ^{13}C (‰) ds</th>
<th>δ^{13}C (‰) ts</th>
<th>fru-gru $\Delta\delta^{13}$C (‰) max.</th>
<th>$\Delta\delta^{13}$C (‰) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F008</td>
<td>-23.90</td>
<td>-24.44</td>
<td>-25.05</td>
<td>-25.40</td>
<td>-22.12</td>
<td>-23.27</td>
<td>0.35</td>
<td>-3.28</td>
</tr>
<tr>
<td>F009</td>
<td>-23.94</td>
<td>-24.31</td>
<td>-24.99</td>
<td>-25.27</td>
<td>-22.13</td>
<td>-23.36</td>
<td>0.28</td>
<td>-3.14</td>
</tr>
<tr>
<td>E003</td>
<td>-24.31</td>
<td>-24.90</td>
<td>-25.34</td>
<td>-25.03</td>
<td>-25.79</td>
<td>-23.48</td>
<td>-0.31</td>
<td>-2.31</td>
</tr>
</tbody>
</table>
11 among 11 pure honey samples from Qinhuangdao CIQ were failed to pass the test and the qualification yield is 0%. The $\Delta \delta^{13}C$ (‰) max. value is 4.34.

10 among 11 samples from Jiangsu CIQ were failed to pass the test and the unqualification yield is 9.1%. The $\Delta \delta^{13}C$ (‰) max. value is 4.16.

About 63.6% of these samples have large difference values between $\delta^{13}C_{ds}$ and $\delta^{13}C_{mono}$ while the left 36.4% have large difference values between $\delta^{13}C_{H}$ and $\delta^{13}C_{P}$.

Trisaccharide was detected from 80% of these samples.
3 among 10 pure honey samples from Qinhuangdao CIQ were failed to pass the test and the qualification yield is 70%. The $\Delta \delta^{13}C$ (‰) max. value is 5.24.

3 among 10 samples from Jiangsu CIQ were failed to pass the test and the unqualification yield is 70%. The $\Delta \delta^{13}C$ (‰) max. value is 5.13.

All samples have large difference values between $\delta^{13}C_H$ and $\delta^{13}C_P$

No trisaccharide was detected from all samples.
Linden honey

- 4 among 4 pure honey samples from Qinhuangdao CIQ were failed to pass the test and the qualification yield is 0%. The $\Delta\delta^{13}C$ (%) max. value is 2.81.
- 3 among 4 samples from Jiangsu CIQ were failed to pass the test and the unqualification yield is 25%. The $\Delta\delta^{13}C$ (%) max. value is 2.37.
- The difference values between $\delta^{13}C_{\text{mono}}$ and $\delta^{13}C_P$ are relatively larger.
- Trisaccharide was detected from Qinhuangdao CIQ
Sunflower honey

- 0 among 4 pure honey samples from Qinhuangdao CIQ were failed to pass the test and the qualification yield is 100%.

- 1 among 4 samples from Jiangsu CIQ were failed to pass the test and the unqualification yield is 75%. The $\Delta \delta^{13}C$ (‰) max. value is 2.41.
Conclusion

- All samples have $\Delta \delta^{13}C (\%o)$ fru-glu values less than or equal to ±1.0‰

- A large number of pure honey samples have $\Delta \delta^{13}C (\%o)$ max. values larger than ±2.1‰

- According to the method of the LC-IRMS, about 70% pure honey samples in China were considered to be adulterated, although those are 100% natural honeys.