The protection of bees and pollination under global change:

Perspectives in a challenging applied science

Axel Decourtye, Cédric Alaux, <u>Yves Le Conte</u>, Mickaël Henry

The protection of bees and pollination under global change:

• Aims:

• Impact of threats on bee populations on bee science (the published literature)

• what further studies are needed to offer mitigation options?

Impact of threats on bee populations on bee science

Bibliometric analysis (1987–2016)

- Web of Science
- Bee research: 33,000 referenced publications
- 11.8% explicitly investigate the biological and environmental threats involved in bee declines

Bibliometric analysis (1987–2016)

Two-fold increase in the proportion of global change publications in the last 30 years: shifting point!

Prime concerns of scientists: 1989 - 92 versus 2013 - 16

- Varroa mite, the most studied in the early 90's (28 to 55 per year), decreased in proportion
- Floral resources and habitat loss: being marginally investigated 30 years ago, but now >15% of research effort (rise of wild bees)
- Pesticide-related topics: developed substantially, now account 27.7%

Developing sustainable and adaptive beekeeping

- Honey bee losses impact Sustainability of beekeeping
 - economic, social and environmental issues of bee farming systems
 - > tools for assessment of sustainability

- > the varroa mite!
- Genetic adapted to global change
 - ➤ What kind of bees and plants for climate changes?
 - > What Selection?
- Monitoring devices / transhumance / local floral ressources
- New diseases for honeybees
 - Research on the risk associated with bee exchanges
 - Development of new practices to fight pests

2. Redesigning farming systems toward a reduction of chemical dependency

- Bee-friendly and effective farming systems:
 - Alternative strategies to chemical use !!!!!!!!!!!!
 - > Toxicity assessment in a real world!
 - Ecological intensification
 - Diversification of farming systems

3. Restoring and improving nutritional resources

- Habitat enhancement and restoration
 - ➤ Native plants
 - > Plant aboundance and diversity
 - ➤ Their nutritional interest for bees?
 - > Semi-natural habitats

> crop breeding programs to improve floral nutritional resources

4. Pollination:

- Lack of pollination services can induce decreasing pollinator demand
 - ➤ Biotechnology is engaged in reducing pollinator demands by limiting the dependence of crop varieties on insect-mediated pollination (pathenocarpy).
- Increasing pollinator supplies
 - Using managed and wild bees
 - > balancing the trade-offs between beekeeping and wild bee conservation
- Ecological intensification and integrated crop pollination
 - > Including both wild and managed bees

Future perspectives in a challenging applied science

- Restore and protect bee habitats (network of "green infrastructure" for foraging and nests)
- Test and support ecologically intensified farming
- Conserve diversity of beekeeping practices (genetic, diversified systems)
- Regulate movement of managed pollinators

Redesigning farming systems toward a reduction of chemical dependency

(diversification, reduction of chemical dependency, crops substitution...)

Restoring and improving food resources of bees

(restoration and protection of natural and semi-natural habitats)

Developing a sustainable and adaptive beekeeping

(genetic diversity, regulation of managed pollinators movement)

Integrated crop pollination - Association of honeybees and wild pollinators

Henry^{1,4}

Available online at www.sciencedirect.com

ScienceDirect

Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science

Axel Decourtye^{1,2,3}, Cédric Alaux^{1,4}, Yves Le Conte^{1,4} and Mickaël

Developing sustainable and adaptive beekeeping

(genetic diversity, regulation of managed pollinators movement)

Redesigning farming systems toward a reduction of chemical dependency (diversification, reduction of chemical dependency, crops substitution...)

Restoring and improving nutritional resources

(restoration and protection of natural and semi-natural habitats)

Integrated crop pollination-Association of honeybees and wild pollinators

Current Opinion in Insect Science